原文链接:https://zhuanlan.zhihu.com/p/29360425
正则化(Regularization)是机器学习中一种常用的技术,其主要目的是控制模型复杂度,减小过拟合。最基本的正则化方法是在原目标(代价)函数 中添加惩罚项,对复杂度高的模型进行“惩罚”。其数学表达形式为:
式中 、
为训练样本和相应标签,
为权重系数向量;
为目标函数,
即为惩罚项,可理解为模型“规模”的某种度量;参数
控制控制正则化强弱。不同的
函数对权重
的最优解有不同的偏好,因而会产生不同的正则化效果。最常用的
函数有两种,即
范数和
范数,相应称之为
正则化和
正则化。此时有:
本文将从不同角度详细说明 、
正则化的推导、求解过程,并对
范数产生稀疏性效果的本质予以解释。