理解感知机模型

感知机是一种很传统和经典的分类算法了,现在机器学习的书基本上也很少详细讲了,大多还会简单介绍一下。看 ng 的机器学习课程,在讲 SVM 支持向量机的时候,从逻辑回归的代价函数直接修改到SVM的代价函数,实在难以理解,逻辑回归和SVM之间的关系和区别,还得好好想想

感知机模型有自身的局限性,它只能做线性分类。如果数据不是线性可分的,那还真没办法。但是了解感知机模型,对后面学习SVM很有帮助的

1. 感知机模型

感知机只能用来做线性分类,所谓线性分类是说,假设我们有一堆样本数据,我们必须找到一条线或者一个超平面,能把这堆样本划分到线的两边

preview

用数学的语言来说,如果我们有m个样本,每个样本对应于n维特征和一个二元类别输出,如下: