二项分类逻辑回归

线性回归产生的预测值y=\theta^T x是实值,而逻辑回归通常是要解决分类问题。用线性回归来解决分类问题效果是很差的

分类问题在生活中是很常见的,二项逻辑回归模型有如下的条件概率分布

  1. 成功概率:P(Y=1|X) = \frac {1}{1+e^{-\theta^T x}}
  2. 失败概率:P(Y=0|X) = 1- \frac {1}{1+e^{-\theta^T x}}